Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transplantation ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637929

RESUMEN

The major role of CD8+ T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8+ T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8+ T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.

3.
J Clin Invest ; 134(6)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271093

RESUMEN

Virus-induced memory T cells often express functional cross-reactivity, or heterologous immunity, to other viruses and to allogeneic MHC molecules that is an important component of pathogenic responses to allogeneic transplants. During immune responses, antigen-reactive naive and central memory T cells proliferate in secondary lymphoid organs to achieve sufficient cell numbers to effectively respond, whereas effector memory T cell proliferation occurs directly within the peripheral inflammatory microenvironment. Mechanisms driving heterologous memory T cell proliferation and effector function expression within peripheral tissues remain poorly understood. Here, we dissected proliferation of heterologous donor-reactive memory CD8+ T cells and their effector functions following infiltration into heart allografts with low or high intensities of ischemic inflammation. Proliferation within both ischemic conditions required p40 homodimer-induced IL-15 transpresentation by graft DCs, but expression of effector functions mediating acute allograft injury occurred only in high-ischemic allografts. Transcriptional responses of heterologous donor-reactive memory CD8+ T cells were distinct from donor antigen-primed memory CD8+ T cells during early activation in allografts and at graft rejection. Overall, the results provide insights into mechanisms driving heterologous effector memory CD8+ T cell proliferation and the separation between proliferation and effector function that is dependent on the intensity of inflammation within the tissue microenvironment.


Asunto(s)
Trasplante de Corazón , Interleucina-15 , Animales , Ratones , Linfocitos T CD8-positivos , Rechazo de Injerto , Memoria Inmunológica , Interleucina-15/genética , Ratones Endogámicos C57BL , Trasplante Homólogo , Interleucina-9/metabolismo
5.
Am J Transplant ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219866

RESUMEN

Mouse models have been instrumental in understanding mechanisms of transplant rejection and tolerance, but cross-study reproducibility and translation of experimental findings into effective clinical therapies are issues of concern. The Mouse Models in Transplantation symposium gathered scientists and physician-scientists involved in basic and clinical research in transplantation to discuss the strengths and limitations of mouse transplant models and strategies to enhance their utility. Participants recognized that increased procedure standardization, including the use of prespecified, defined endpoints, and statistical power analyses, would benefit the field. They also discussed the generation of new models that incorporate environmental and genetic variables affecting clinical outcomes as potentially important. If implemented, these strategies are expected to improve the reproducibility of mouse studies and increase their translation to clinical trials and, ideally, new Food and Drug Administration-approved drugs.

6.
Cell Host Microbe ; 31(10): 1620-1638.e7, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776865

RESUMEN

Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.


Asunto(s)
Intestinos , Microbiota , Ratones , Animales , Intestinos/microbiología , Intestino Delgado , Inmunoglobulina A , Bacterias , Mucosa Intestinal/microbiología
7.
Cancer Discov ; 13(9): 2090-2105, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37378557

RESUMEN

Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunologic sex differences are not fully understood. Here, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in the tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD-1 treatment. Moreover, increased T-cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by the X chromosome inactivation escape gene Kdm6a. These findings demonstrate that sex-biased predetermined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response. SIGNIFICANCE: Immunotherapies in patients with GBM have been unsuccessful due to a variety of factors, including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-biased T-cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve the therapeutic efficacy of immunotherapy in GBM. See related commentary by Alspach, p. 1966. This article is featured in Selected Articles from This Issue, p. 1949.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Masculino , Femenino , Ratones , Animales , Glioblastoma/genética , Agotamiento de Células T , Linfocitos T CD8-positivos , Inmunoterapia , Inmunidad , Neoplasias Encefálicas/patología , Microambiente Tumoral
8.
Am J Transplant ; 23(9): 1307-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37084848

RESUMEN

Antibodies reactive to self-antigens are an important component of posttransplant immune responses. The generation requirements and functions of autoantibodies, as well as the mechanisms of their influence on alloimmune responses, still remain to be determined. Our study investigated the contribution of autoimmunity during rejection of renal allografts. We have previously characterized a mouse model in which the acute rejection of a life-supporting kidney allograft is mediated by antibodies. At rejection, recipient sera screening against >4000 potential autoantigens revealed DNA topoisomerase I peptide 205-219 (TI-I205-219) as the most prominent epitope. Subsequent analysis showed TI-I205-219-reactive autoantibodies are induced in nonsensitized recipients of major histocompatibility complex-mismatched kidney allografts in a T cell-dependent manner. Immunization with TI-I205-219 broke self-tolerance, elicited TI-I205-219 immunoglobin G autoantibodies, and resulted in acute rejection of allogeneic but not syngeneic renal transplants. The graft loss was associated with increased priming of donor-reactive T cells but not with donor-specific alloantibodies elevation. Similarly, passive transfer of anti-TI-I205-219 sera following transplantation increased donor-reactive T cell activation with minimal effects on donor-specific alloantibody levels. The results identify DNA topoisomerase I as a novel self-antigen in transplant settings and demonstrate that autoantibodies enhance activation of donor-reactive T cells following renal transplantation.


Asunto(s)
Trasplante de Riñón , Linfocitos T , Ratones , Animales , Trasplante de Riñón/efectos adversos , ADN-Topoisomerasas de Tipo I , Autoanticuerpos , Rechazo de Injerto , Aloinjertos , Riñón
9.
Transplantation ; 107(9): 1935-1944, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36978228

RESUMEN

BACKGROUND: Costimulatory blockade-induced allograft tolerance has been achieved in rodent models, but these strategies do not translate well to nonhuman primate and clinical transplants. One confounder that may underlie this discrepancy is the greater ischemic inflammation imposed on the transplants. In mice, cardiac allografts subjected to prolonged cold ischemic storage (CIS) before transplant have increased ischemia-reperfusion injury, which amplifies infiltrating endogenous memory CD8 T-cell activation within hours after transplantation to mediate acute graft inflammation and cytotoxic lymphocyte-associated molecule-4 immunoglobulin-resistant rejection. This study tested strategies inhibiting memory CD8 T-cell activation within such high ischemic allografts to achieve long-term survival. METHODS: A/J (H-2 a ) hearts subjected to 0.5 or 8 h of CIS were transplanted to C57BL/6 (H-2 b ) recipients and treatment with peritransplant costimulatory blockade. At 60 d posttransplant, regulatory T cells (Treg) were depleted in recipients of high ischemic allografts with anti-CD25 monoclonal antibody (mAb) or diphtheria toxin. RESULTS: Whereas peritransplant (days 0 and +1) anti-lymphocyte function-associated antigen-1 mAb and anti-CD154 mAb prolonged survival of >60% allografts subjected to minimal CIS for >100 d, only 20% of allografts subjected to prolonged CIS survived beyond day 80 posttransplant and rejection was accompanied by high titers of donor-specific antibody. Peritransplant anti-lymphocyte function-associated antigen-1, anti-tumor necrosis factor-α, and anti-CD154 mAb plus additional anti-CD154 mAb on days 14 and 16 obviated this donor-specific antibody and promoted Treg-mediated tolerance and survival of 60% of high ischemic allografts beyond day 100 posttransplant, but all allografts failed by day 120. CONCLUSIONS: These studies indicate a strategy inducing prolonged high ischemic allograft survival through Treg-mediated tolerance that is not sustained indefinitely.


Asunto(s)
Trasplante de Corazón , Linfocitos T Reguladores , Ratones , Animales , Trasplante de Corazón/efectos adversos , Ratones Endogámicos C57BL , Trasplante Homólogo , Ligando de CD40 , Aloinjertos , Supervivencia de Injerto , Rechazo de Injerto/prevención & control
10.
J Leukoc Biol ; 113(6): 544-554, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805947

RESUMEN

Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.


Asunto(s)
Acuaporina 4 , Activación de Linfocitos , Ratones , Humanos , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Receptores de Antígenos de Linfocitos T , Linfocitos T , Transducción de Señal
11.
Am J Transplant ; 22(7): 1779-1790, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35294793

RESUMEN

Diminishing homeostatic proliferation of memory T cells is essential for improving the efficacy of lymphoablation in transplant recipients. Our previous studies in a mouse heart transplantation model established that B lymphocytes secreting proinflammatory cytokines are critical for T cell recovery after lymphoablation. The goal of the current study was to identify mediators of B cell activation following lymphoablation in allograft recipients. Transcriptome analysis revealed that macrophage-inducible C-type lectin (Mincle, Clec4e) expression is up-regulated in B cells from heart allograft recipients treated with murine anti-thymocyte globulin (mATG). Recipient Mincle deficiency diminishes B cell production of pro-inflammatory cytokines and impairs T lymphocyte reconstitution. Mixed bone marrow chimeras lacking Mincle only in B lymphocytes have similar defects in T cell recovery. Conversely, treatment with a synthetic Mincle ligand enhances T cell reconstitution after lymphoablation in non-transplanted mice. Treatment with agonistic CD40 mAb facilitates T cell reconstitution in CD4 T cell-depleted, but not in Mincle-deficient, recipients indicating that CD40 signaling induces T cell proliferation via a Mincle-dependent pathway. These findings are the first to identify an important function of B cell Mincle as a sensor of damage-associated molecular patterns released by the graft and demonstrate its role in clinically relevant settings of organ transplantation.


Asunto(s)
Linfocitos B , Trasplante de Corazón , Aloinjertos , Animales , Linfocitos B/metabolismo , Citocinas/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos , Ratones , Ratones Endogámicos C57BL
12.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081629

RESUMEN

Antibody-mediated rejection (ABMR) continues to be a major problem undermining the success of kidney transplantation. Acute ABMR of kidney grafts is characterized by neutrophil and monocyte margination in the tubular capillaries and by graft transcripts indicating NK cell activation, but the myeloid cell mechanisms required for acute ABMR have remained unclear. Dysregulated donor-specific antibody (DSA) responses with high antibody titers are induced in B6.CCR5-/- mice transplanted with complete MHC-mismatched A/J kidneys and are required for rejection of the grafts. This study tested the role of recipient myeloid cell production of myeloperoxidase (MPO) in the cellular and molecular components of acute ABMR. Despite induction of equivalent DSA titers, B6.CCR5-/- recipients rejected A/J kidneys between days 18 and 25, with acute ABMR, whereas B6.CCR5-/-MPO-/- recipients rejected the grafts between days 46 and 54, with histopathological features of chronic graft injury. On day 15, myeloid cells infiltrating grafts from B6.CCR5-/- and B6.CCR5-/-MPO-/- recipients expressed marked phenotypic and functional transcript differences that correlated with the development of acute versus chronic allograft injury, respectively. Near the time of peak DSA titers, activation of NK cells to proliferate and express CD107a was decreased within allografts in B6.CCR5-/-MPO-/- recipients. Despite high titers of DSA, depletion of neutrophils reproduced the inhibition of NK cell activation and decreased macrophage infiltration but increased monocytes producing MPO. Overall, recipient myeloid cells producing MPO regulate graft-infiltrating monocyte/macrophage function and NK cell activation that are required for DSA-mediated acute kidney allograft injury, and their absence switches DSA-mediated acute pathology and graft outcomes to chronic ABMR.


Asunto(s)
Funcionamiento Retardado del Injerto/inmunología , Rechazo de Injerto/inmunología , Células Asesinas Naturales , Macrófagos , Neutrófilos , Peroxidasa , Aloinjertos/inmunología , Aloinjertos/patología , Animales , Isoanticuerpos/inmunología , Trasplante de Riñón/efectos adversos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Activación de Linfocitos/inmunología , Proteínas de Membrana de los Lisosomas/inmunología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Células Mieloides/inmunología , Células Mieloides/patología , Neutrófilos/inmunología , Neutrófilos/patología , Peroxidasa/biosíntesis , Peroxidasa/inmunología
13.
Am J Transplant ; 21(11): 3519-3523, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34058061

RESUMEN

In 1963, Lepow and colleagues resolved C1, the first component of the classical pathway, into three components, which they named C1q, C1r, and C1s. All three of these components were demonstrated to be involved in causing hemolysis in vitro. For over 30 years after that seminal discovery, the primary function attributed to C1q was as part of the C1 complex that initiated the classical pathway of the complement cascade. Then, a series of papers reported that isolated C1q could bind to apoptotic cells and facilitate their clearance by macrophages. Since then, rheumatologists have recognized that C1q is an important pattern recognition receptor (PRR) that diverts autoantigen containing extracellular vesicles from immune recognition. This critical function of C1q as a regulator of immune recognition has been largely overlooked in transplantation. Now that extracellular vesicles released from transplants have been identified as a major agent of immune recognition, it is logical to consider the potential impact of C1q on modulating the delivery of allogeneic extracellular vesicles to antigen presenting cells. This concept has clinical implications in the possible use of C1q or a derivative as a biological therapeutic to down-modulate immune responses to transplants.


Asunto(s)
Complemento C1r , Complemento C1s , Activación de Complemento , Complemento C1q
14.
Transplantation ; 105(2): 284-290, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384380

RESUMEN

Antibody-mediated rejection (AMR) is an important cause of graft loss and continues to present a formidable obstacle to successful transplantation. Unresolved problems continue to be the absence of effective strategies to ablate the donor-specific antibody (DSA) response as well as to attenuate the antibody-mediated graft tissue injury. While the properties of DSA that cause greater graft tissue injury and the characteristic microvascular pathology of the graft injury are well documented, the mechanisms underlying the injury mediated by the antibodies remains unclear. Recent transcriptome interrogation of kidney and heart biopsies procured during ongoing AMR has indicated the expression of genes associated with natural killer (NK) cell activation that is absent during T cell-mediated rejection. The expression of NK cell transcripts during AMR correlates with the presence of CD56+ cells in the microcirculation inflammation observed during AMR. Several mouse models have recently demonstrated the role of NK cells in antibody-mediated chronic vasculopathy in heart allografts and the requirement for NK cell activation during acute AMR of kidney allografts. In the latter model, NK cell activation within kidney allografts is regulated by the activation of myeloid cells producing myeloperoxidase. Overall, the studies to date indicate that AMR constitutes a complex series of DSA-induced interactions with components of the innate immune response. The innate immune participants and their expressed effector functions resulting in the rejection are beginning to be identified. The identification of these components should uncover novel targets that can be used to attenuate acute graft tissue injury in the presence of DSA.


Asunto(s)
Rechazo de Injerto/inmunología , Inmunidad Humoral , Inmunidad Innata , Isoanticuerpos/sangre , Células Asesinas Naturales/inmunología , Trasplante de Órganos/efectos adversos , Animales , Modelos Animales de Enfermedad , Rechazo de Injerto/sangre , Humanos , Células Asesinas Naturales/metabolismo , Fenotipo , Resultado del Tratamiento
16.
Kidney Int ; 98(4): 897-905, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763116

RESUMEN

Allogeneic transplants elicit dynamic T cell responses that are modulated by positive and negative co-stimulatory receptors. Understanding mechanisms that intrinsically modulate the immune responses to transplants is vital to develop rational treatment for rejection. Here, we have investigated the impact of programed cell death-1 (PD-1) protein, a negative co-stimulatory receptor, on the rejection of MHC incompatible kidney transplants in mice. T cells were found to rapidly infiltrate the kidneys of A/J mice transplanted to C57BL/6 mice, which peaked at six days and decline by day 14. The T cells primarily encircled tubules with limited infiltration of the tubular epithelium. Lipocalin 2 (LCN2), a marker of tubular injury, also peaked in the urine at day six and then declined. Notably, flow cytometry demonstrated that most of the T cells expressed PD-1 (over 90% of CD8 and about 75% of CD4 cells) at day six. Administration of blocking antibody to PD-L1, the ligand for PD-1, before day six increased T cell infiltrates and urinary LCN2, causing terminal acute rejection. In contrast, blocking PD-1/PD-L1 interactions after day six caused only a transient increase in urinary LCN2. Depleting CD4 and CD8 T cells virtually eliminated LCN2 in the urine in support of T cells injuring tubules. Thus, our data indicate that PD-1/PD-L1 interactions are not just related to chronic antigenic stimulation of T cells but are critical for the regulation of acute T cell responses to renal transplants.


Asunto(s)
Trasplante de Riñón , Receptor de Muerte Celular Programada 1 , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Muerte Celular , Ligandos , Ratones , Ratones Endogámicos C57BL
17.
Am J Transplant ; 20(10): 2740-2754, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342598

RESUMEN

Understanding the mechanisms of T cell homeostatic expansion is crucial for clinical applications of lymphoablative therapies. We previously established that T cell recovery in mouse heart allograft recipients treated with anti-thymocyte globulin (mATG) critically depends on B cells and is mediated by B cell-derived soluble factors. B cell production of interleukin (IL)-1ß and IL-6 is markedly upregulated after heart allotransplantation and lymphoablation. Neutralizing IL-1ß or IL-6 with mAb or the use of recipients lacking mature IL-1ß, IL-6, IL-1R, MyD88, or IL-6R impair CD4+ and CD8+ T cell recovery and significantly enhance the graft-prolonging efficacy of lymphoablation. Adoptive co-transfer experiments demonstrate a direct effect of IL-6 but not IL-1ß on T lymphocytes. Furthermore, B cells incapable of IL-1ß or IL-6 production have diminished capacity to mediate T cell reconstitution and initiate heart allograft rejection upon adoptive transfer into mATG treated B cell deficient recipients. These findings reveal the essential role of B cell-derived IL-1ß and IL-6 during homeostatic T cell expansion in a clinically relevant model of lymphoablation.


Asunto(s)
Trasplante de Corazón , Interleucina-6 , Animales , Linfocitos B , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Rechazo de Injerto/prevención & control , Interleucina-1beta , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
19.
Transplantation ; 104(10): 2024-2034, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039966

RESUMEN

Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.


Asunto(s)
Inmunidad Adaptativa , Rechazo de Injerto/inmunología , Supervivencia de Injerto , Memoria Inmunológica , Trasplante de Órganos , Linfocitos T/inmunología , Tolerancia al Trasplante , Inmunidad Adaptativa/efectos de los fármacos , Animales , Rechazo de Injerto/sangre , Rechazo de Injerto/prevención & control , Supervivencia de Injerto/efectos de los fármacos , Humanos , Memoria Inmunológica/efectos de los fármacos , Inmunosupresores/uso terapéutico , Trasplante de Órganos/efectos adversos , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Tolerancia al Trasplante/efectos de los fármacos , Resultado del Tratamiento
20.
Transplantation ; 104(4): 669-670, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31815906
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...